A Bonding Model for Bent Bis-(π -cyclopentadienyl) Metal Compounds

By J. C. GREEN, M. L. H. GREEN, and C. K. PROUT*

(Chemical Crystallography and Inorganic Chemistry Laboratories, South Parks Road, Oxford OX1 3QR)

Summary An alternative to the Balhausen and Alcock models for $bis-(\pi$ -cyclopentadienyl)metal systems, based on new structural data, is described.

Two descriptions for the bonding in bent bis- $(\pi$ -cyclopentadienyl)metal systems have been proposed. Balhausen and Dahl¹ described bis- $(\pi$ -cyclopentadienyl)molybdenum dihydride and, in order to account for the basic properties of this compound, suggested that the d^2 electrons were located in a 'lone pair' between the two hydrogens, see Figure 1(a). Alcock² observed that in the compound $(\pi$ -C₅H₅)(C₅H₅Me)ReMe₂ the Me-Re-Me angle of 79° was too small to accommodate the lone pair that should be present if the Balhausen model was correct. He therefore suggested that d^2 electrons in this system were located in an orbital which lay largely outside the ReMe₂ system, [Figure 1(b)].

FIGURE 1 (a). Location of orbitals suggested by Balhausen and and Dahl.¹ (b) Location of orbitals suggested by Alcock.²

The crystal structures of the compounds $(\pi-C_5H_5)_2M(SMe)_2$,³ where M = Ti or V and $(\pi-C_5H_5)_2ZrX_2$,⁴ where X = F or I show that the X-M-X angle decreases in going from a d^0 system (Ti or Zr) to a d^1 (V) system.

show that there is a strong and wide-spread correlation between the X-M-X angle and the number of 'non-bonding' d-electrons on the metal.

This crystal structure evidence strongly supports the Alcock model for the compounds $(\pi$ -C₅H₅)₂MX₂. On the other hand, the basic properties of the hydrides $(\pi$ -C₅H₅)₂-MH₂, M = Mo or W, and $(\pi$ -C₅H₅)₂ReH and the structure of the trihydrides $(\pi$ -C₅H₅)₂MH₂, M = Nb or Ta, seem to support the Balhausen description.

FIGURE 2 (a). The highest filled and lowest empty M.O.'s in ferrocene. (b) The proposed M.O.'s in a bent $(\pi$ -C₅H₅)₂M system. (c) Representation of the proposed hybrid orbitals $\psi_{\mathbf{A}}$ and $\psi_{\mathbf{B}}$ formed from the metal $d_{\mathbf{x}^2-\mathbf{y}^2}$ and $d_{\mathbf{z}^2}$ orbitals.

These apparent differences may be resolved by a bonding model which incorporates features of both Alcock and Balhausen models as follows.

We have found that the photoelectron spectrum⁷ of the complex $(\pi$ -C₅H₅)₂MoH₂ suggests that there is a strong resemblance between the metal-ring bonding in this compound and in ferrocene. Therefore, it seems reasonable to

Compound		X-M-X	<i>d</i> (M–X)	MCp ^f
$(\pi - C_5H_5)_2Mo(SnBr_3)Br^3$	d^2	80.2(2)	2·606(9)*	1.99(2)
$(\pi - C_5 H_5)_2 MoCl_2^b$	d^2	82.0(2)	2.471(5)	1.99(1)
$[(\pi - \mathring{C}_5 H_5)_2 \text{ReBr}_2] + BF_4 - b$	d^2	82·0(1)	2 ·565(5)	1·89(1)
$(\pi - C_5 H_5)_2 V(SPh)_2^c$	d^{1}	89.3		
$\left[\left(\pi-C_{5}H_{5}\right)_{2}MoCl_{2}\right]^{+}BF_{4}^{-b}$	d^{1}	87.9(1)	$2 \cdot 382(2)$	1.98(1)
$(\pi - C_5 H_5)_2 NbCl_2 b$	d^{1}	85.6(1)	2·470(4)	2 ·09(1)
$[(\pi - C_5 H_5)_2 NbCl]_2 O^2 + \cdot 2BF_4 - b$	d^0	96-2(9)	2.370(4)	$2 \cdot 10(1)$
$(\pi - C_5 H_5)_2 Zr Cl_2 b$	d^0	97.1(2)	$2 \cdot 441(5)$	$2 \cdot 21(1)$
$(\pi - C_5 H_5)_2 Zr F_2^d$	d^0	96·2(3)	1·98(1)	$2 \cdot 21(1)$
$(\pi - C_5 H_5)_2 Zr I_2^d$	d^0	96.2(1)	2.832(2)	$2 \cdot 19(1)$
$(\pi - C_5 H_5)_2 Ti (SPh)_2^c$	ď٩	95-0`´	<u> </u>	

TABLE Some distances and angles in $(\pi$ -C₅H₅)₂MX₂ compounds

^a ref. 5; ^b ref. 6; ^c ref. 3; ^d ref. 4; ^e Mo-Br; ^t perpendicular distance from metal atom to cyclopentadienyl ring.

We have determined the crystal structures of seven new $(\pi$ -C₆H₅)₂MX₂ compounds,^{5,6} where the metal is a d^0 , d^1 or d^2 system. All analyses were based on diffractometer data and refined to R values of 2.6—9.0%. The data (Table)

generate the M.O. diagram for the bent bis- $(\pi$ -cyclopentadienyl) metal system by 'bending' the ferrocene system to C_{2v} symmetry. This is shown in Figure 2(a) and (b) where the upper essentially non-bonding orbitals of ferrocene, the e_{2g} and a_{1g} orbitals become the $3a_1$, $2b_1$, and $4a_1$ orbitals in the bent system.

FIGURE 3 (a). The M.O.'s resulting from interaction between the $(\pi-C_5H_5)_2Mo$ system and two hydrogen ligands, showing the 'lone ($\mu \sim g_{14g}^{-1}g_{12}^{-1}$) system and the orbital. (b) The M.O.s resulting from interaction between the (π -C₅H₅)₂Mo system and three hydrogen ligands, showing that all three metal orbitals are employed. For simplicity, all other M.O.'s arising from the $(\pi$ -C₅H₅)₂Mo system are omitted.

Assuming these orbitals are largely located on the metal then they can be said to arise primarily from the d_{xy} , $d_{x^2-y^2}$ and d_{z^2} metal orbitals. Whilst the $2b_1$ orbital may be regarded as being essentially d_{xy} in character the $4a_1$ and $3a_1$ would mix and it can be envisaged that they might give rise to two new orbitals, $\psi_{\rm A}$ and $\psi_{\rm B}$, see Figure 2. The $\psi_{\rm A}$ orbital resembles the $\psi_{\rm C'}$ orbital of the Alcock model and the $\psi_{
m B}$ orbitals resembles the $\psi_{
m B'}$ orbital of the Balhausen model, in their localisation.

This model may be used to describe the bonding in both compounds of the type $(\pi - C_5H_5)_2MX_2$ showing the highest filled orbital as the $\psi_{\mathtt{A}}$ orbital [Figure 3(a)] whereas when the bent bis-(π -cyclopentadienyl) metal system interacts with three ligands as in $[(\pi - C_5 H_5)_2 MoH_3]^+$ there are now three bonding M.O.s and there are now no 'lone pair' electrons [Figure 3(b)]. It follows from the above model that in binuclear systems of the type $(\pi - C_5H_5)_2MX_2ML_2$ the occurrence of an acute angle for X-M-X suggests the absence of M-M' bonding and in compounds where $M = d^2$ the electrons would be located in the ψ_{A} type orbital. If X-M-X is obtuse this implies that a M-M' bond is present. This correlation is in accord with present experimental evidence on bond angles in M-(µ-X₂)-M' systems.⁸

Further support for this model is derived from the observations that (a) the perpendicular distances from the metal to the $(\pi$ -C₅H₅) ring decreases steadily with increasing nuclear charge [Zr $(2\cdot 2 \text{ Å}) > \text{Nb} (2\cdot 1 \text{ Å}) > \text{Mo}$ (2.0 Å) > Re (1.9 Å) but for a given central metal atom is independent of electron occupancy $[e.g. (\pi-C_5H_5)_2MoCl_2(d^2)$ $(1.99 \text{ Å}) \approx (\pi - C_5 H_5)_2 \text{MoCl}^+(d^1) (1.98 \text{ Å})$ whereas (b) the M-Cl bond length is roughly constant with nuclear charge, $[(\pi - C_5 H_5)_2 ZrCl_2 \quad (2.441 Å) \approx (\pi - C_5 H_5)_2 NbCl_2 \quad (2.470 Å) \approx$ $(\pi - C_5 H_5)_2 MoO_2$ (2.471 Å)] but for a given central metal atom decreases with decreasing electron occupancy, [e.g. $(\pi - C_5 H_5)_2 MoCl_2(d^2)$ (2·471 Å) > $(\pi - C_5 H_5)_2 MoCl_2(d^1)$ (2·382 Å)].

(Received, 24th January 1972; Com. 096.)

- ¹C. J. Balhausen and J. P. Dahl, Acta Chem. Scand., 1961, 15, 1333.
- ² N. W. Alcock, J. Chem. Soc. (A), 1967, 2001.
 ³ L. H. Dahl, 4th Internat. Conf. Organometallic Chem., Bristol 1969.

- ⁴ M. A. Bush and G. A. Sim, J. Chem. Soc. (A), 1971, 2225.
 ⁵ T. S. Cameron and C. K. Prout, J. Chem. Soc. (A), in the press.
 ⁶ T. S. Cameron, B. Denton, C. K. Prout, and G. V. Rees, unpublished work.
- ⁷ J. C. Green, unpublished work.

⁸ T. S. Cameron, C. K. Prout, G. V. Rees, M. L. H. Green, K. K. Joshi, G. R. Davies, B. T. Kilbourn, P. S. Braterman, and V. A. Wilson, *Chem. Comm.*, 1971, 14; W. E. Douglas, M. L. H. Green, C. K. Prout, and G. V. Rees, *ibid.*, p. 897.